

EUCARAY®Radiating Cables

EUCARAY® RMC 12-CH

1/2" radiating cable optimized for applications at 5 GHz such as WLAN.

Radiating Cables

Eupen EUCARAY[®] radiating cables have been developed to provide RF-coverage for wireless applications in confined areas. They provide homogeneous and continuous RF-coverage, and allow simultaneous transmission of multiple wireless services. EUCARAY[®] radiating cables are engineered and produced in Belgium to highest quality standards for best performance and longest lifetime.

Product Description

The EUCARAY®RMC 12-CH radiating cable is best performing at highest frequencies and to be used inside buildings, tunnels, rail and production environment. The size of 1/2" features low weight and small bending radius.

Features and Benefits

- From 5000 to 6000 MHz with resonant frequencies*
- Robust Cable with low fading at short Aerial to Cable distance
- Main Applications: WLAN controlled Transportation and Automation Systems
- Optimised for WLAN applications in 5.15 5.35 and 5.47 5.85 GHz bands

Certification and Fire Behaviour

Halogen-free, Low-smoke and Flame-retardant outer jacket:

- Low corrosive gas emission acc. to IEC 60754-2
- Flame retardant acc. to IEC 60332-1-2 and IEC 60332-3 Cat. C
- Low smoke emission acc. to IEC 61034
- Reaction to fire according EN60332-1-2 E_{ca}
- Compliant to EN 50575
- Fulfils the requirements of EN 45545-2:2013+A1:2015

Ordering Information

Ordering name: RMC 12-CH-HLFR

Recommended connectors and cable preparation tool:

• 7-16 / 4.3-10 Type: <u>716FR12</u>; 43FR12 • N Type: <u>NF50R12</u>; <u>NM50R12</u>

• Tool: <u>SPTC50R12</u>

More information under: www.radiating-cables.com www.eupen.com

^{*)} EUCARAY® achieves low coupling losses due to the patented slot design. Resonant frequencies are narrow-band VSWR peaks that usually occur in non-used bands of the radio-spectrum. Their amplitude generally decreases the higher the order.

EUCARAY® **Radiating Cables**

EUCARAY® RMC 12-CH

Technical Information

• Size		1/2"
 Frequency range 	MHz	5000 - 6000
 Recommended Frequency bands 		5150-5350 and 5470-5850 MHz
 Cable Type 		RMC (Radiated Mode Cable)
Material		Flame retardant polyolefin
Slot design		Groups of slots at short intervals
• Impedance	Ω	50 +/- 3
 Velocity Ratio 	%	88
Capacitance	pF/m (pF/ft)	76 (23.2)
 Inner Conductor DC resistance 	$\Omega/1000$ m ($\Omega/1000$ ft)	1.48 (0.45)
 Outer Conductor DC resistance 	$\Omega/1000$ m ($\Omega/1000$ ft)	2.80 (0.85)
 Inner Conductor Material 		Copper clad aluminium wire
Dielectric Material		Cellular polyethylene
 Outer Conductor Material 		Overlapping copper foil with slot groups, bonded to the jacket
Diameter Inner Conductor	mm (in)	4.8 (0.189)
Diameter Dielectric	mm (in)	12.4 (0.488)
 Diameter over Jacket 	mm (in)	15.5 (0.61)
 Minimum Bending Radius, Single Bend 	mm (in)	200 (7.87)
Cable Weight	kg/m (lb/ft)	0.232 (0.156)
 Tensile Strength 	daN (lbf)	110 (243)
 Indication of Slot Alignment 		embossed line 180° opposite
 Storage Temperature 	°C (°F)	-70 to +85 (-94 to +185)
Installation Temperature	°C (°F)	-25 to +60 (-13 to +140)
 Operation Temperature 	°C (°F)	-40 to +85 (-40 to +185)
 Longitudinal Loss and Coupling Loss⁽¹⁾ 		

Frequency	Longitudinal Loss	Coupli	ng Loss
	dB/100m (dB/100ft)	C50% (dB)	C95% (dB)
2400 MHz	12.3 (3.75)	67	77
5200 MHz	24.6 (7.50)	62	71
5500 MHz	26.3 (8.02)	60	61
5800 MHz	29.4 (8.96)	55	59

Resonant Frequencies	MHz	415, 1246, 2077, 2907, 3738, 4568, 5399 MHz
 Recommended Clamp Spacing 	m (ft)	0.5 (1.64)
Distance to Wall Recommended / Min.	mm (in)	80 - 180 (3.15 - 7.00) / 50 (1.96)

The above stated values are nominal values and subject to manufacturing tolerances as follows: Longitudinal Loss +/-5 % and Coupling Loss +/- 5 dB. As with any radiating cable, the performance in building or tunnel may deviate from figures measured according to the IEC 61196-4 standard.

Distance = 2m. C50 & (C95) are the average coupling losses with 50% (95%) probability calculated in accordance with the standard.

Coupling loss measurements taken in accordance with IEC 61196-4 - Free Space Method are available on request.

All information on this datasheet is subject to change without notice.

¹⁾ Measured in tunnel according to IEC 61196-4 - Ground Level Method.